Communications to the Editor

"Higher-Order" Cyanocuprates: Are They Real?¹

Steven H. Bertz

AT&T Bell Laboratories Murray Hill, New Jersey 07974 Received July 28, 1989 Revised Manuscript Received March 5, 1990

Gilman reported in 1952 that lithium dimethylcuprate(1) can be prepared from 2 equiv of MeLi and 1 equiv of CuI.² Following his lead, House et al.,^{3a} Whitesides et al.,^{3b} and Corey and Posner^{3c} also used cuprates prepared from Cul in their pioneering work on the synthetic applications of organocuprates. Beginning in 1981, Lipshutz et al. published a series of papers entitled "Chemistry of Higher Order, Mixed Organocuprates" about the cuprates prepared from 2 equiv of lithium reagent (RLi) and 1 equiv of CuCN, symbolized as R₂Cu(CN)Li₂.⁴ On the basis of improved yields and (where relevant) different stereochemical outcomes,4-6 it was claimed that "these species are differentiated from 'lower order' or Gilman-like cuprates, R₂CuLi, in that the Cu-cluster contains an additional ligand (originally negatively charged). Hence, they are formally Cu(1) dianionic salts".46

It can now be reported that the reagents prepared from 2 equiv of RLi (R = alkyl or aryl) and I equiv of CuCN may not be truly higher order ate complexes of Cu. ¹³C NMR spectral evidence suggests that they are, in fact, Gilman-like cuprates, in tetrahydrofuran (THF) where the reagents prepared from CuCN are usually used. Except for a CN resonance that is independent of R, their ¹³C NMR spectra are virtually identical with those of the corresponding reagents prepared from CuI, both before and after the addition of hexamethylphosphoramide (HMPA) and 12-crown-4 (12-C-4).

Ph₂CuLi was chosen as a typical aryl cuprate, and Et₂CuLi and Me₂CuLi were chosen for study as typical alkyl cuprates. The corresponding lithium reagents used in this study were obtained as crystalline solids that are accurately weighable in a drybox.⁷ The ¹³C NMR chemical shifts at -78 °C of these cuprates, prepared from Cul and CuCN in THF (0.1 M), are summarized in Table 1. Within ± 0.1 ppm for each measurement, all four lines in the ¹³C NMR spectrum of Ph₂CuLi prepared from CuI, which we symbolize as Ph₂CuLi·LiI, have the same chemical shifts in THF as the corresponding lines in the spectrum of Ph₂CuLi prepared from CuCN, which we denote as Ph₂CuLi-LiCN. Likewise, Et₂CuLi-Lil and Et₂CuLi-LiCN have virtually identical ¹³C NMR spectra, and the same is true of Me₂CuLi-LiI and Me₂CuLi-LiCN. We have proposed the dot formalism to indicate some sort of interaction between the components which may or may not be understood in detail.6

also proposed a slash formalism for cases where essentially independent com-

a) poperties are present in the same solution or mixture; see ref 6a.
(7) (a) PhLi: Schlosser. M.; Ladenberger, V. J. Organomet. Chem. 1967, 8, 193. (b) EtLi: Brown, T. L.; Rogers, M. T. J. Am. Chem. Soc. 1957, 79, 1859. (c) MeLi: Smith, R. A. J., unpublished results.

Table 1.	¹³ C Nuclear	Magnetic Resonance	Chemical Shif	ts of Organocuprates ^a
----------	-------------------------	--------------------	---------------	-----------------------------------

reagent	C1	C2	C3	C4	CN
Ph ₂ CuLi·LiCN	174.33	141,44	125.38	121.95	158.72
(+HMPA + 12-C-4) ^o	(174.75)	(141.61)	(125.35)	(121.83)	(166.32)
Ph ₂ CuLi-Lil	174.13	141.38	125.44	122.07	
(+HMPA + 12-C-4)	(174.74)	(141.60)	(125.36)	(121.84)	
Et ₂ CuLi-LiCN	4.64	17.24			158.81
(+HMPA + 12-C-4)	(5.00)	(17.48)			(166.06)
Et ₂ CuLi-Lil	4.63	17.14			
(+HMPA + 12-C-4)	(5.01)	(17.48)			
Me ₂ CuLi ₂ LiCN	-9.51				158.88
(+HMPA + 12-C-4)	(-8.72)				(166.10)
Me ₂ CuLi ₁ Lil	-9.62				. ,
(+HMPA + 12-C-4)	(-8.66)				

^a Measured at -78 °C in THF- d_8 (0.1 M). ^b HMPA (312 μ L) and 200 μ L of 12-C-4 were added to 3.0 mL of THF-d8. The 12-C-4 salts are insoluble in THF without the HMPA

lodide and cyanide are very different in their electronic properties as ligands for metal ions; e.g., they are at opposite ends of the spectrochemical series⁸ and have significantly different nephelauxetic^{8a} and trans effects.^{8b} These phenomena have been correlated with changes in the NMR spectra of transition-metal complexes;9 in fact, NMR has been reported to be more sensitive than optical spectroscopy for locating ligands in the spectrochemical series.^{9a} The sizable influence of the CN ligands in organomercuric cyanides on the chemical shifts was attributed to back-bonding.¹⁰ Even if back-bonding were not involved in a cyanocuprate, an inductive effect would be expected to operate via the σ -bonds.

Consequently, if CN were coordinated to Cu in an organocuprate, a significant difference in chemical shifts would be expected between such a cyanocuprate and the corresponding cuprates with or without a coordinating I. As detailed above, we do not see significant differences between the ¹³C NMR chemical shifts for R in R₂CuLi·Lil and the corresponding R₂CuLi·LiCN (R = Me, Et, Ph). Futhermore, it is significant that the CN resonances for Ph2CuLi·LiCN (158.7 ppm), Et2CuLi·LiCN (158.8 ppm), and Me₂CuLi·LiCN (158.9 ppm) are essentially identical. In light of the different σ -donor properties of Ph and Me or Et, this is additional evidence that CN is not bonded to Cu. The role of CN in these reagents is illuminated by the observation that the ¹³C NMR chemical shift of ⁶Li¹³CN in THF- d_8 (0.1 M) at -78 °C is shifted upfield from 160.3 to 158.9 ppm by the addition of l equiv of LiClO₄, which suggests that R₂CuLi·LiCN may be $R_2Cu^-Li_2CN^+$. In the presence of HMPA and 12-C-4 (see Table 1, footnote b), the ¹³C NMR peak is at 164.9 ppm. In the methyl case ¹H NMR chemical shifts^{4d} show somewhat

larger differences between corresponding iodocuprates and cyanocuprates, since the H atoms are farther from the Cu atom and its associated electronic effects and closer to other species in solution. In contrast, our ethyl and phenyl cuprates have virtually superimposable ¹H NMR spectra. For example, the chemical shifts for Et₂CuLi-Lil are -0.531 (J = 8.0 Hz) and 1.08 ppm (J = 8.0 Hz) and those for $Et_2CuLi\cdot LiCN$ are -0.538 (J = 8.0 Hz) and 1.08 ppm (J = 8.0 Hz).

The ⁶Li NMR peaks for Ph₂CuLi·Lil and Ph₂CuLi·LiCN measured under the same conditions as the ¹³C NMR spectra are at -0.08 and -1.07 ppm (1 M 6LiCl/MeOH internal capillary reference at 0 ppm), respectively. The ⁶Li NMR peaks for Et₂CuLi-Lil and Et₂CuLi-LiCN are at 0.06 and -1.01 ppm, and

⁽¹⁾ New Copper Chemistry. 17. Part 16: Bertz, S. H.; Smith, R. A. J. J. Am. Chem. Soc. 1989, 111, 8276.
(2) Gilman, H.; Jones, R. G.; Woods, L. A. J. Org. Chem. 1952, 17, 1630.
(3) (a) House, H. O.; Umen, M. J. J. Org. Chem. 1973, 38, 3893. (b) Whitesides, G. M.; Fischer, W. F.; San Filippo, J.; Bashe, R. W.; House, H. O. J. Am. Chem. Soc. 1969, 91, 4871. (c) Corey, E. J.; Posner, G. H. J. Am. Chem. Soc. 1969, 91, 4871. (c) Corey, E. J.; Posner, G. H. J. Am. Chem. Soc. 1967, 89, 3911; 1968, 90, 5615.
(4) (a) Lipshutz, B. H.; Wilhelm, R. S.; Floyd, D. M. J. Am. Chem. Soc. 1981, 103, 7672. (b) Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A. Tetrahedron 1984, 40, 5005. (c) Lipshutz, B. H. Synthesis 1987, 325. (d) Limited spectrosconic studies were reported: Linshutz B. H.; Kozlowski, J.

Limited spectroscopic studies were reported: Lipshutz, B. H.; Kozlowski, J. A.; Wilhelm, R. S. J. Org. Chem. 1984, 49, 3943. (5) (a) Lipshutz, B. H.; Wilhelm, R. S. J. Am. Chem. Soc. 1982, 104, 4696. (b) In other cases (ref 6a), the yields are not significantly higher. (6) (a) Bertz, S. H.; Dabbagh, G. Tetrahedron 1989, 45, 425. (b) We have

^{(8) (}a) Huheey, J. E. Inorganic Chemistry; 3rd ed.; Harper & Row: New York, 1983; pp 384, 413. (b) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry; Wiley: New York, 1980; pp 114, 663.
(9) (a) Hagen, K. I.; Schwab, C. M.; Edwards, J. O.; Sweigart, D. A. Inorg. Chem. 1986, 25, 978. (b) Hughes, M.; Mason, J.; Leigh, G. J.; Richards, R. L. J. Organomet. Chem. 1988, 341, 381. (c) Buchner, W.; Schenk, W. A. Inorg. Chem. 1984, 23, 132. (d) Thomson, J.; Baird, M. C. Can. J. Chem. 1973, 51, 1179.
(10) Kress W. Breitinger, D. K.; Sandelbeck, P. J. Organomet. Chem.

⁽¹⁰⁾ Kress, W.; Breitinger, D. K.; Sendelbeck, R. J. Organomet. Chem. 1983, 246, 1.

the peaks for Me₂CuLi·Lil and Me₂CuLi·LiCN are at 0.03 and -1.03 ppm, respectively. These results are consistent with either our formulation or Lipshutz's, both of which feature a different counterion for Li in the case of the corresponding cuprates prepared from Cul and CuCN. The ⁶Li NMR peak for ⁶Li¹³CN under the same conditions is at -1.38 ppm, and in the presence of equimolar LiClO₄ it is at -0.87 ppm. It is interesting to note that the shifts for R₂CuLi-LiCN are in this range.

The cuprates prepared from CuCN and I equiv of RLi have different $\hat{C}N$ chemical shifts for R = Ph (148.51 ppm) and R =Et (149.11 ppm) or Me (149.33 ppm). Upon addition of Licomplexing agents HMPA and 12-C-4, these chemical shifts move upfield to 145.44 and 146.47 or 146.55 ppm, respectively. Increased back-bonding is expected to result in an upfield shift of the CN resonance.¹¹ These observations are evidence that CN is indeed bonded to Cu in these 1:1 reagents.

In the presence of HMPA and 12-C-4, the corresponding cuprates R_2CuLi ·Lil and R_2CuLi ·LiCN (R = Ph, Et, Me) have the same spectra (Table 1) for the organic groups, to within ± 0.01 ppm (digital resolution) for Et and Ph and ± 0.05 ppm for Me. Furthermore, the chemical shifts for R in the presence of HMPA and 12-C-4 are only modestly downfield from the values measured without them. For comparison LiCN in THF in the presence of HMPA and 12-C-4 has a chemical shift of 165.2 ppm at -78 °C.

Power and co-workers have reported that mononuclear cuprates can be prepared as $Li(12-C-4)_2^+$ salts and characterized by X-ray crystallography.¹² The similarity of our results with and without Li-complexing agents strongly suggests that these cuprates are essentially [RCuR]⁻ anions or their aggregates (vide infra) in THF solution. The additives may serve to convert aggregates or contact ion pairs to solvent-separated ion pairs, ^{13,14} or to convert one solvent-separated ion pair into another.

The ¹³C NMR chemical shifts reported by Hallnemo and Ullenius¹⁵ for Ph₂CuLi-LiI in pyridine-d₅ are close to our values in THF- d_8 (Table 1). It is also interesting to note that their values for this reagent in dichloromethane- d_2 are very close to our values measured in dimethyl sulfide (DMS),¹⁶ which are significantly different from those in THF- d_8 or pyridine- d_5 . We believe that different species are present in strongly coordinating (THF, pyridine) and weakly coordinating (DMS, dichloromethane) solvents. Power and Olmstead have characterized the crystals grown from DMS solutions of halide-free Ph₂CuLi as dimeric (Ph₂CuLi)₂·3DMS.¹⁷ Thus, the ¹³C NMR chemical shift appears to be useful for elucidating the gross structures of organocuprates, e.g., whether phenyl cuprates are monomeric ($\delta_{ipso}\approx 175~\text{ppm}$ for 12-C-4 salt) or dimeric ($\delta_{ipso} \approx 162 \text{ ppm in DMS}$). When HMPA and 12-crown-4 are added to $(Ph_2CuLi)_2$ in DMS, the ¹³C NMR spectrum changes to that of Ph₂Cu⁻ Li(12-C-4)₂^{+,18}

Ph₆Cu₃Li₂⁻ units in crystals grown from THF solutions of Ph₂CuLi·Lil or Ph₂CuLi·LiCN comprise three nearly linear [PhCuPh]⁻ subunits held together by two Li⁺ ions.^{17,19} Whether such aggregates are present at equilibrium in our NMR solutions is an open question which does not bear directly upon the question of higher order cuprates. We believe it is significant that neither 1 nor CN is present in this cluster. If a species with a Cu-CN bond were the "thermodynamic sink", then it should be present in the solid state as well as solution.

The only higher order cuprate that has been confirmed crys-

tallographically is our Ph₃CuLi₂·Ph₂CuLi·4DMS complex,¹⁶ the detailed structure of which was elucidated by Olmstead and Power.²⁰ The Ph_3Cu^{2-} subunit appears to be held together by three bridging Li cations; therefore, our higher order cuprate is best viewed as $Ph_3CuLi_3^+ Ph_2Cu^-$. Our NMR study also established that Ph₃CuLi₂ does not exist in ether or THF,¹⁶ presumably because ethereal solvents remove the bridging Li cations and thus destabilize the higher order structure.

In light of the results reported herein, two possibilities are (1) the CN is bonded to Cu in "higher order" cyanocuprates but does not affect the ¹³C NMR spectra or (2) the CN is not bonded to Cu. We believe the term "higher order" should not be applied to cuprates prepared from CuCN until more positive evidence for such structures is presented.

Acknowledgment. I thank G. Dabbagh for some preliminary spectra and P. Mirau and R. Hoffman for helpful advice. The Et⁶Li and PhLi used in this study were prepared by E. Lanfer (Organometallics, Inc.) and H. Hatch (Lithco), respectively. The ⁶Li¹³CN was supplied by MSD Isotopes.

(20) Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1989, 111, 4135.

"Higher Order" Cyanocuprates R₂Cu(CN)Li₂: Discrete **Reagents or "Lower Order" LiCN-Modified Gilman Cuprates**?

Bruce H. Lipshutz,* Sunaina Sharma, and Edmund L. Ellsworth⁺

> Department of Chemistry, University of California Santa Barbara, California 93106 Received November 24, 1989 Revised Manuscript Received March 5, 1990

In late 1981, an initial disclosure was made that addition of 2 equiv of an organolithium to CuCN leads to "higher order, mixed cyanocuprates".¹ These were written as " $R_2Cu(CN)Li_2$ " (1), implying a Cu(I) dianionic species containing three covalently bound ligands on copper, one of which is the cyano group.² Notwithstanding the now extensive use of higher order (HO) cuprates,³ reagents that oftentimes afford considerably different chemical outcomes (e.g., in reactivity,^{4a} yields,^{4b} stability,^{4c} etc.) when compared to other commonly used lower order (LO) analogues [e.g., R₂CuLi, RCu(CN)Li], the very existence of complexes 1 has recently been challenged.⁵ It has been proposed that cuprates prepared from 2RLi and CuCN are simply Gilman-like species containing LiCN, rather than LiX (X = Br, 1), somewhere within the cluster and hence should be more accurately represented as R₂CuLi·LiCN. We now describe, using spectroscopic studies, prima facie evidence in support of HO cyanocuprates.

Generation of $Me_2Cu(CN)Li_2(2)$ was accomplished in both THF³ and Me_2S/Et_2O^6 from the usual admixture of 2MeLi (in Et₂O) with CuCN. The low-temperature (-80 °C) ¹³C NMR

0002-7863/90/1512-4032\$02.50/0 © 1990 American Chemical Society

⁽¹¹⁾ Salomon, R. G.; Kochi, J. K. J. Organomet. Chem. 1974, 64, 135.
(12) Hope, H.; Olmstead, M. M.; Power, P. P.; Sandell, J.; Xu, X. J. Am. Chem. Soc. 1985, 107, 4337.

 ⁽¹³⁾ Dolak, T. M., Bryson, T. A. Tetrahedron Lett. 1977, 1961. See also:
 Cohen, T.; Abraham, W. D.; Myers, M. J. Am. Chem. Soc. 1987, 109, 7923 and references cited therein.

 ⁽¹⁴⁾ For Li(HMPA)₄⁺, see: Reich, H. J.; Green, D. P.; Phillips, N. H.
 J. Am. Chem. Soc. 1989, 111, 3444. For Li(THF)₄⁺, see: Becker, B.;
 Enkelmann, V.; Müllen, K. Angew. Chem., Int. Ed. Engl. 1989, 28, 458.
 (15) Hallnemo, G.; Ullenius, C. Tetrahedron 1983, 39, 1621. These au-

thors correctly surmised that lithium diphenylcuprate is dimeric in nonpolar solvents.

⁽¹⁶⁾ Bertz, S. H.; Dabbagh, G. J. Am. Chem. Soc. 1988, 110, 3668.
(17) Power, P. P.; Olmstead, M. M., unpublished results.
(18) Bertz, S. H.; Dabbagh, G., unpublished results.

⁽¹⁹⁾ Hope, H.; Oram, D.; Power, P. P. J. Am. Chem. Soc. 1984, 106, 1149.

⁺ Proctor & Gamble Predoctoral Fellow, 1989-1990.

⁽¹⁾ Lipshutz, B. H.; Wilhelm, R. S.; Floyd, D. M. J. Am. Chem. Soc. 1981, (2) Early 'H NMR studies demonstrated that addition of MeLi to CuCN

leads to a new species once the 1:1 ratio (i.e., MeCu(CN)Li] has been exceeded; cf.: Lipshutz, B. H.; Kozlowski, J. A.; Wilhelm, R. S. J. Org. Chem. 1984, 49, 3943.

<sup>1984, 49, 5943.
(3)</sup> Lipshutz, B. H. Synthesis 1987, 325. Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A. Tetrahedron 1984, 40, 5005.
(4) (a) See, for example: Lewis, D. E.; Rigby, H. L. Tetrahedron Lett.
1985, 26, 3437. (b) For one case, see: Reger, D. L.; Belmore, K. A.; Mintz, E.; Charles, N. G.; Griffith, E. A. H.; Amma, E. L. Organometallics 1983, 2, 101. (c) Bertz, S. H.; Dabbagh, G. J. Chem. Soc., Chem. Commun. 1982, 1020. 1030.

⁽⁵⁾ Bertz, S. H. J. Am. Chem. Soc., preceding paper in this issue.

⁽⁶⁾ The manner in which the cuprate is formed is critical; the Cu(I) salt must be added to the MeLi in Me₂S. The alternative mode of addition leads to precipitation of lithium salts (i.e., LiBr, LiI). For the first preparation of HO cuprates R₃CuLi₂ in Me₂S, see: Bertz, S. H.; Dabbagh, G. J. Am. Chem. Soc. 1988, 110, 3668